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i. Consideration is given to a plane linear initial boundary problem 

A u  = o (H(x) < y < 0), Ut, + Uy = 0 (y = 0), ( 1 . 1 )  

Uy ~ H ~ U x  (g = H ( x ) ) ,  U-=  O, U, = - - 5 ( x - - x o )  (t = 0 ,  y = 0), 

which describes movement of a liquid caused by an initial disturbance of the free boundary. 
At instant of time t = 0 the liquid surface has a concentrated elevated area equal to one in 
the vicinity of point x0, and with t > 0 this elevation breaks down under the force of gravi- 
ty. Relationships (i.I) are written in dimensionless variables, and scales for length and 
velocity are selected such that the Froude number for the problem and depth of the liquid 
with Ix I + = equal one. A right Cartesian coordinate system is orientated so that axis y is 
in a direction opposite to that of free fall; function U(x, y, t, x 0) is the potential of 
velocities depending on x 0 as for the parameter; function H(x) describes the relief of the 
bottom. 

Function U(x, y, t, x 0) will be called the fundamental solution of the Cauchy-Poisson 
problem since with use of it solution of the general problem [I] 

~ = H ~  (y = H ( z ) ) ,  ~ = % ( x ) ,  ~ ,  = ~ ( x )  (t = O, y = O) 

is described in quadratures 

(p (x, g, t) = S I Ut (x, g, t - -  t o, Xo) p (x o, to) dt o dx o - -  .l" Ut (x, g, t, Xo) % (Xo) dx o - -  U (x, y, t, Xo) (91 (Xo) dxo. 
--~o 0 --oo --oo 

In the future the case is considered when the depth of the basin changes slowly, i.e., H(x) = 

--h(ex) (~<<i, ~ER Imax'h~l=i)" 

The problem formulated belongs to a broad range of problems about propagation of a sig- 
nal in an inhomogeneous medium with slowly changing properties. Currently two approaches 
are known for approximate solution of a problem of this sort: Keller [2], based on a notion 
of high-frequency asymptotics, and an approach recently intensively developed by Dobrokhotov 
and Zhevandrov [i, 3] based on Maslov methods. In [i] a solution of the formulated problem 
is built up in the three-dimensional case with accuracy prescribed beforehand with respect 
to parameter e. The approximate solution is the sum of two terms, the first of which de- 
scribes the long-wave component, and the second the short-wave component. The long-wave com- 
ponent is found from a recurrent sequence of problems for an inhomogeneous wave equation 
with a variable coefficient. The short-wave component of the solution is written out by 
means of quadratures. The equations obtained with this approach may be simplified by means 
of known methods of analyzing integrals depending on parameters and given in a form suitable 
for numerical calculations. 

It is of interest to obtain these results by means of a special modification of the Kel- 
ler method. In the present work a method is used of combined asymptotic expansions which 
make it possible to build up the main term of uniformly suitable asymptotics for deformation 
of the free boundary N(x, t) [the equation y = D(z, t) gives the shape of the free boundary 
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at instant t, ~(x, t) = -Ut(x, 0, t, x0)] with e + 0, t > 0, x e R ~. For the given problem 

these asymptotics may be written in explicit form, which makes it possible to carry out a de- 
tailed study. 

Solution of problem (i.i) is found in the form of an asymptotic expansion for the power 
of small parameter e 

U(2, y, t, 2o) = ~ ~JU (j)(321, y, t, 20) 
]=o 

(x~ = x - x0). The principal term of this expansion describes solution of the Cauchy-Poisson 
problem for an even bottom H(x) = -h 0 = -h(ex0). With y = 0 we have [4] 

i i fl-* (~;) sin f~ (~,) t cos ~x~ dv U (~ (x~, 0, t ,  %) = - -  ~- 
0 

( 1 . 2 )  

(~=(v) = v thanvh0). Asymptotics of function (1.2) with xz = (6 - 60)/e, t = ~/e, ~ + 0, 
~ I, t0 ~ i, �9 ~ 1 are written out by means of the stationary phase method [5] 

U(~ sl/2~-~/2(8gl6(~)l)-~/~fl-~(a)exp (~(a) + ~ ( ~ - L ) ) +  z~ + 0 ([s/~]'/~) + c.c. (1.3) 

(~ = ~((~ - 60)/~) is the solution of the equation 5(~) = -(~ - $0)/~). It is clear that 
the expansion selected is unsuitable with large values of xl, t, since it does not make it 
possible to satisfy the nonflow condition at the bottom with the accuracy prescribed before- 
hand and uniformly with respect to x~. 

2. In order to refine the structure of the solution in region [xz[ >> i new 'slow' 
variables ~ = ex, �9 = et, 60 = ex0 are introduced, and the asymptotic expansion of the solu- 
tion is found in the form [2] 

U ( x ,  y, t, %) = el/2e T~162176 ~ ( i e / A j  (~, y, T, t0) q- c.c.  ( 2 . 1 )  
j=0  

T hi s  form o f  t h e  e x p a n s i o n  f o l l o w s  f rom l i m i t i n g  r e l a t i o n s h i p  ( 1 . 3 )  which  s h o u l d  be c o n t i n u -  
ous in  a c c o r d a n c e  w i t h  t h e  main t e rm  o f  e x p a n s i o n  ( 2 . 1 ) .  S u b s t i t u t i o n  o f  ( 2 . 1 )  in  a L a p l a c e  
e q u a t i o n  and b o u n d a r y  c o n d i t i o n s  ( 1 . 1 )  in  t h e  normal  way [2] l e a d s  s an e q u a t i o n  f o r  phase  
function O and transfer equations for hj. 

In a zero approximation we have a spectral problem 

0~2Ao+Ao~ ~ = 0  ( - - h ( ~ ) < y < 0 ) ,  Aoy = 0  (y = - - h ( ~ ) ) ,  --0~'A o + A 0 y - - 0  (y----0), 

whose neutral solution exists with the conditions 

0~ ~ ----- 0r th [O~h(~)] ( 2 . 2 )  

and it is written as 

Ao(~, y, T, ~0) C : = o(~, ~, ~o) ch 0~(y + h(~)). 

Equation (2.2) with the first order partial derivatives has a standard form F($, q, m) = 

0(q = 8~, m = 0T, F(6, q, ~) = m2 _ q than qh(6)). It corresponds to a characteristic system 
[6] 

d0)ld)~ = O, d~/d~. = 20), d~/d~. = - -S(qh(~) ) ,  dqld)~ --- q2hr ~- qh), 

dO/d;~ = 20) 2 - -  qS(qh(~)),  S(x)  ---- th x -k x ch-~-x, 

to which it is necessary to join initial conditions 

( 2 . 3 )  

=o ,  ~ = G ,  O - - O , q = ~ ,  0)=a(~)  ( k = O ) ,  (2.4) 
and ~ p l a y s  t h e  r o l e  o f  a p a r a m e t e r  f o r  t h e  i n i t i a l  band (~ e R1) .  I n i t i a l  d a t a  a r e  o b t a i n e d  
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from conditions for conjugation of phase functions in expansions (1.3) and (2.1). Curves 
x = x(%, ~), ~ = ~(X, a), ~ > 0 with a fixed value of a (e �9 R ~) are called rays. 

Relationships (2.2)-(2.4) give 

and q(X, a )  = 0 o n l y  w i t h  a = O. I f  lal  > 0 and h > O, t h e n  d~/dX ~ O, +~, and i t  i s  p o s -  
s i b l e  t o  change  f rom v a r i a b l e  ~ t o  v a r i a b l e  ~. F u n c t i o n s  in  which  s u b s t i t u t i o n  h = X(~, a)  
i s  c a r r i e d  ou t  a r e  marked w i t h  i n d e x  1, f o r  example  x = ~z (~ ,  a ) .  In  new v a r i a b l e s  p rob l em 
( 2 . 3 ) ,  ( 2 . 4 )  i s  r e s o l v e d  in  q u a d r a t u r e s  

= ~t (~, a) = - -  2~ (~) J S -~ [q~ (~, ~) h (~)] d~, 
[o 

(2.5) 
0 = 0~(~, a) = ~ ( ~ ) ~  + ~ q~(~, a) d~, 

to 
q~(~, a) th [ql(~, a)h(~)] ----- fl~'(a) (~ ~ R t, ~ ~ R ~ \ { 0 } ) .  

The following first approximation for expansion (2.1) leads to a transfer equation for 
the amplitude function 

dC/d~ -{- k(~, a)C = 0 (~ > 0), 

where C(X, a) = C0(~(X, a), x(X, a), ~0), 

q2h~ ; 2-J-- 1 
h th qh]. 

Here  8 ~  = q~ = d q z ( ~ ,  5 (~ ,  x z 0 ) ) / d ~ ,  where  5 ( ~ , ~ ~ z 0 )  i s  such  a f u n c t i o n  t h a t  ~ ( ~ ,  a ( ~ ,  
x ~ o ) )  = xzo = c o n s t .  C o n s e q u e n t l y ,  8 ~  = qz~ + a~q~a.  By d i f f e r e n t i a t i n g  t h e  i d e n t i t y  de-  
t e r m i n i n g  ~(~ ,  xz0)  w i t h  r e s p e c t  t o  ~, we o b t a i n  5~ = - x : ~ / ~ z a .  In  a d d i t i o n ,  f rom ( 2 . 5 )  we 
have 

Oqt/O~ = --qx~h~ [S(q~h) ch~(q~h)l -~, 

j' (q h) h 

(2.6) 

The asymptotics constructed cease to be valid in the vicinity of those points (~, ~) 
for which the determinant of a Jacobl matrix J = 8(~, x)/8($, ~) reduces to zero, i.e., 
8TI/8~ = 0. In this case ~ reduces to infinity and the amplitude function Cl(~, a) becomes 
indefinitely large. The condition IJl = 0 means that in plane $, x only two rays are found 
determined by the first equality of (2.5) and emerging from the initial ray at different 
angles which intersect with X > 0. In the vicinity of this point representation ~, a § $, x 
ceases to be single-valued, which is also reflected in the equality 8xl/Sa = 0. In addition, 
since all of the rays emerge from one point ~ = ~0, x = 0, then the value of X = 0 will also 
be singular. 

With $ + ~0 Eqs. (2.6) give 

TI~ = (--~](~((~))  + 2Q(a)hoSo/So~)(~ - -  ~o) "J- 0(1~ - -  ~ol2), 

So = S(ocho), 

whence k1(~, ~) = -(i/2)S0( ~ - ~0) -I + 0(i). Taking account of these asymptotics we write 
an equation for CI($, ~): 
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C~tq - [ (~ /2 ) (~ - -~o )  -* + D ( ~ .  ~ ) l C x = 0 ,  

h e r e  D(g,  a)  = - k z ( g ,  a ) / S ( q z h ( g ) )  - ( 1 / 2 ) ( g  - g0) -~ and D = O ( 1 ) w i t h  $ + ~0. 
s o l u t i o n  g i v e s  an e q u a t i o n  

The general 

C~(L~)=C......(~)[~--~oI-~Zexp{--~D(f~,~)d~]. ( 2 . 7 )  

It is noted that T = Ir -  0l/l [ + o(I  - with ~ + $0, and therefore the requirement 
of agreement of amplitude functions in expansions (1.3) and (2.1) leads to an equation for 
c , , , (~)  

C, (~) = fl-~ (~) (I fi (~) I/( 8~ 16 (a) I)) 1/2 e~a/a ch-~uh0 �9 

The main  t e r m  o f  a s y m p t o t i c  e x p a n s i o n  ( 2 . 1 )  has  t h e  fo rm 

U (x, y, t, Xo) = s~/~C, (~)] ~ --  ~o 1-~/~ ch q~ (~, a) (y + h (~)) X 

. ~  (2.8) X e x p  Q(~z) T-6 q l (~ , a )  d[~ - -  D([3, a) d[~+~.T -60(~a/~) + c . e .  

~o ~o 

Note i. If h(~) = h 0 with -a < ~ - $0 < b, a > 0, b > 0, then in this section ql - ~, 
D = 0 and Eq. (2.8), as might be expected, conforms with (1.3). In addition, if in a certain 
interval I c R I, hg($) -- 0, $ e I, then 

u(~/~,  y, ~18, xo) = V~(c - ~o)/(~ - L ) u ( ~ / e ,  y, ~le, Xo) + o(e~/~), 

(c is arbitrary point from I). 

Note 2. Proceeding from explicit Eq. (2.6), for the derivative 8TI/8~ it is possible 
to show that asymptotic expansion (2.1) loses force not only in the vicinity of point g = 
$0, �9 = 0, but also close to rays for which ~ = +0. With all of the rest of the values of 

and �9 representation ~, T + $, ct is neutrally singular, since the integrand in the equa- 
tion 8~i/8~ is of fixed sign. With e + 0 8~i/8~ + 0, ~(~) + 0, and consequently it loses 
its applicability not only for expansion (2.1), but also for asymptotics (1.3). For an even 
bottom values ~ = _+0 relate to waves propagating with critical velocity $ = $0 -+ vFh0 T. 

3. Right asymptotic behavior of (1.2) may be found by means of a generalized stationary 

phase method since ~(6) # 0. It is convenient to deal with not only potential U, but with 
its derivative U t for which the asymptotic expansion is written out in terms of special func- 
tions. Following from the Whitham method [7] we obtain 

2(aTt) 1/3 \ ( ~ ? ~  / -6 Ai --  (3?t)l/a ] j  + . . .  ( 3 . 1 )  

with t + ~, xl/t + 0, y = 0, 7 = (i/6)h05/2- Here the first term corresponds to a wave prop- 
agating to the right. The Airy integral Ai(z) involved in (3.1) is 

oo 

0 

With large values of the argument 

[ 7 - ~  z-~4exp --  z 3/2 z - +  + oo,  

Whence it follows that the solution decreases exponentially ahead of the wave front x I = 

v~0t and it becomes oscillatory behind it. The transition region has a width proportional 
to t I/s. Outside this region asymptotics (3.1) agree with the previously constructed (1.3). 
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In the transition region relating to a wave propagating to the right, instead of expan- 
sion (2.1) we use 

- -  U~ (x, y, t, Xo) ---- ~i/8 ~ 8j (Aj (~, y, %, ~o) Ai (~) Jr e~/aB; (~, y, ~, ~o) Ai' (~)), ( 3 . 2 )  

where ~ = ex, �9 = et, ~0 = ~x0, 5 = ~-~/3p(~, ~). The form of this expansion follows from 
the same arrangements which were used in writing (2.1) and conditions for conformity with 
expansion (3.1) in the overlapping region. An expansion of the form (3.2) in which there is 
additionally a high frequency factor was used in [8] for constructing an approximation cor- 
rect in the vicinity of a caustic. 

Substitution of (3.2) in relationship (i.i) previously differentiated with respect to t 
and written in variables ~, ~, y, and equatin~ coefficients with ~JAi(~), ~J+i/3Ai'(~) taking 

account of the equalities Ai"(~) = ~Ai(~), e=/3~ = p(~, ~) leads to an equation for function 
p($, ~) and a recurrent sequence of transfer equations for Aj, Bj, and the form of these 
equations depends on the sign of p($, ~). 

We consider a region in plane ~, �9 in which p($, ~) > 0. The curve p($, ~) = 0 corre- 
sponds to the crest of a leading wave and it should be determined in the course of solving 
the problem. In a zero approximation we have a spectral problem 

A 0 ~  q- qbt'~Ao = 0 (--h(~) < y < 0), Ao~ = 0 (y = --h(~)),  

Ao~ + (D~Ao = 0 (y = 0), 

whose nontrivial solution exists with the conditions 

and is written in the form 

( 3 . 3 )  

Ao(~, y, ~, ~o) = Co(~, T, ~o) cos ~r  (y + h(~)). 

By a c t i n g  on t h e  p l a n  i n  p a r t  1 we o b t a i n  a c h a r a c t e r i s t i c  s y s t e m  r e l a t i n g  t o  Eq. ( 3 . 3 ) :  

doJ]d% = O, dq/d3. = q2h~/(cos ~ qh), d~/d~, = - -P(qh) ,  d'dd3. ~- 2o), 

d(I)/d% = 2o) ~ - -  qP(qh) ,  P(x) = tg x + x/cos 2 x 
(3.4) 

(~ = ~T, q = ~$)- To this system we join the initial conditions 

= L,  ~ = 0 ,  ~ = %, q =qo(X),  m = 0  (~ = 0 ) .  ( 3 . 5 )  

The first two equalities indicate that rays of Eq. (3.3) emerge from a single point, the 
third gives parametrization of the initial band, and the fourth and fifth follow from re- 
quirements of conformity for starting data. System (3.4) may be integrated if moving from 
X, X, to new independent variables ~, X. Functions ~, q, ~ in which such a change is carried 
out are marked as before with index i. Then 

d~ 
%1 ( ~ '  %) = - -  2)~ p (qih) , (3.6) 

[qi($, ~) is determined from the equation qi tanqih($) = X 2, and sgnqi = -sgn• Thus, know- 
ing the shape of the bottom of a body of water it is possible to determine the solution of 
problem (3.4), (3.5) in a parametric form by Eqs. (3.6). By expressing from the first of 
Eqs. (3.6) X in terms of ~, ~ and substituting in the second equation we derive a dependence 
of p on variables $, T. It is sufficient to know function p~$, T) with small values of 
X(X > 0), since with p ~ i we have ~ ~ g-2/3 and Ai(~) ~ e -I/g with e + O. By expanding the 
right-hand parts of Eqs. (3.6) into a series with X + 0 and discarding terms of the order 
O(X 4) and above, we obtain 

f, (~, ~) = 21/~ h -1/2  (~) d~ - -  �9 h i1~ (~) d~ + . . .  
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This equation occurs for rays emerging from point g = G0, �9 = 0 at angles close to the criti- 
cal value. It is clear that P(G, ~) = 0 along a curve 

: J h -1/~ (~)d~ (, for a level bottom - along the lines ~ -- ~o ~--Vho%) �9 
~o 

The transfer equation for function C01(G, X) takes the form 

dCol V~ ~o 
d~ p(qlh) COi= O, ( 3 . 7 )  

where 

1 2 

t ~ _~ q~h~ 
+ 4P ~/---~i (I)~P (q~h) + ~ P (q~h) q~h~ cos q~h -- h tg q~h cos2 ql h h~q ~. 

The initial condition for Eq. (3.7) follows from the condition of conformity for expan- 
sions (1.3) and (3.2). It is noted that 

~/-~o/P(q~h) = --( i /3)(~ - -  ~o) -~ + 0(~) (~ ~ ~o, "~ -" 0), 

therefore the general solution of (3.7) may be written as 

Co~ (~, %) = Co (7~) (~ - -  ~-o) -~/~ exp - -  D (~, %) d~ 

(D(g, X) = -/~0/P(qlh) - (I/3)(G - ~0)-i). The joining condition for asymptotic expansions 

(1.3) and (3.2) gives C,(X) = (4h0) -z/a + o(i) with X + 0. 

Construction of asymptotics for the solution in region p(g, ~) < 0 is accomplished simi- 
larly. As a result of this we obtain asymptotics for deformation of the free boundary q(x, 
t) in the region of the leading wave 

h(x, t)=(4ho)-~/S(h(sx)/ho)-~/a(i [h(s~)/ho]~/2d~,)-~/8 x 

•  21/3 ~h-II~(aZ,)d)~--t ~hl/~(eZ,)& +O(d/3:~+ 
XO ~:0 

w i t h  ~ + 0 ,  • - 1 / 3  ~ 1.  

I f  h = ho i n  s e c t i o n  xo < x < x l ,  t h e n  Eqs .  ( 3 . 8 )  a nd  ( 3 . 1 )  g i v e  t h e  same r e s u l t .  
xo = 0 and  h ( e x )  = Aex w i t h  x > x l ,  an d  xz 
wave c a l c u l a t e d  by  Eq. ( 3 . 8 )  i s  

(3 .8 )  

Let 
= h0/Ae, then the height of the tip of the leading 

(~. (t), 0 = 41/':3'/~'~h~'~A"/~ (~t + h ~ / A )  -'z~ [ h p  + (~r A~ (~t + hV'/A)'] -'z~ ai  (0) + . . . .  

x .  (t) = (A/4~)(~t + h W A ) "  (~t>~ V ~ / A ,  A >  0). 

It can be seen that with emergence into the sloping section of the bottom the leading wave 
accelerates (x.~(t) ~ t 2, t + ~, for a level bottom x...(t) ~ t), and the amplitude of its damp- 
ing rate grows"(D ~ t -312 with t + ~, for an even bottom D ~ t-I/3). These effects are 
strengthened with an increase in slope of the bottom. 

4. Constructed above was the main term of asymptotics for solving problem (i.i) and a 
method was indicated for calculating the next approximations. The difficulty in construct- 
ing higher approximations is connected with the fact that in representation (3.2) functions 
P(G, ~), A0(G, y, ~, g0), B0($, Y, ~, G0) have finite smoothness in the vicinity of curve 
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~= S h-~2(~)d~' which corresponds to the region of long waves. In fact, these functions have 
B0 

a different form depending on from which direction on this curve we find ourselves. There- 
fore, in order to construct higher approximations it is necessary to refine in addition the 
solution in the region of long waves. The main term of asymptotics for the solution consists 
of three parts each of which is valid in its own region of the determination. However, these 
regions are overlapping zones and the overlap region x e R I, -h(Ex) < y < 0, t > 0 without 
gaps. Existence of overlapping zones makes it possible by known methods (the method of compo- 
site asymptotic expansions, the method of shearing functions, etc.) [9] to construct uniformly 
a convenient approximate solution which on being placed in relationship (i.I) gives a discrep- 
ancy; its order with respect to E is unknown. In the case of localized unevenness of the 
bottom (h(~) - i with ~ ~ (~z, ~2), ~x0 < ~z) the order of the discrepancy is ~3/2 with E § 
0. 

The author thanks I. V. Sturovaya for constant attention to the work and useful advice. 
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